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The filament is an essential component in an electron beam accelerator. The 
current flowing through the filament produces an electron beam through the 
thermionic emission process. The filament current's stability significantly affects 
the electron beam's stability, making the resulting dose homogeneous. A machine 
learning approach with a regression algorithm is used to analyse the 
characteristics of the filament current. The regression algorithms used are the 
decision tree regressor and the random forest regressor. The study chose this 
algorithm to understand and predict the relationship between parameters and 
desired results in the electron accelerator commissioning process. The analysis 
shows that the regression model applied to the filament current data performs 
well. With the decision tree regressor, an MAE of 0.531, an MSE of 0.316, and 
an R2 of 0.961 are obtained, while random forest with an MAE of 0.379, an MSE 
of 0.280, and an R2 of 0.965 are achieved. The experimental results suggest that 
the random forest regressor outperforms the decision tree regressor in the 
characterisation of filament current in electron beam accelerators. 
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INTRODUCTION 
 

The utilisation of electron beams using 
accelerators has been widely carried out in industry 
and research [1]. Electron beam radiation 
technologies [2] that utilise accelerators include 
crosslinking industrial products [3], surface curing of 
materials [4], sterilisation of medical products [5], 
and food irradiation [6]. Electron beam accelerators 
accelerate electron particles through strong electric 
fields [7–9]. The beginning of electron formation 
comes from one of the accelerator components called 
the electron source [10]. Electron sources are used 
not only in electron beam accelerators but also in 
MRI-Linac Therapy [11], electron beam probes [12], 
electron microscopes [13], welding [14], and 
microwave devices [15]. Electron sources consist of 
several main components, including filaments, 
cathode electrodes, anode electrodes, and vacuum 
chambers, as shown in Fig. 1 [16]. 

 
 

Fig 1. Schematic structure of the electron source [16]. 
 

The electron source works by heating a tungsten 
filament to generate electrons, which are then 
directed by Pierce-type electrodes and protected by a 
heat shield on a DN-160 CF flange that matches the 
accelerator tubes from the National Electric 
Corporation. Power is provided through an ultra-high 
vacuum power feedthrough to isolate the anode and 
cathode. When electric current flows through the 
filament, the filament becomes very hot and heats the 
cathode indirectly. The cathode receives heat and 
causes the electrons on its surface to have enough 
energy to escape and exit the cathode surface, a 
phenomenon known as thermionic emission [17]. 
The released electrons are directed by the focusing 
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electrode and then drawn toward the extraction 
anode, resulting in a focused electron beam. The 
resulting electron beam can then be used for 
irradiation [18]. 

The filament current in an electron beam 
accelerator is closely related to the dose received by 
the irradiated sample [19]. Radiation dose measures 
the radiation energy absorbed by the material per unit 
mass. The greater the filament current, the greater the 
dose received by the sample. Filament current is the 
determining factor of the dose rate. Filament current 
characterisation is an important step to ensure 
optimal performance of the electron beam 
accelerator. An in-depth analysis of filament current 
stability and fluctuations is needed to ensure optimal 
dose rate. Machine learning methods can be an 
appropriate choice in supporting this analysis [20] 

because machine learning can learn data patterns, 
relationships between parameters, and optimisation 
based on data collected from electron accelerator 
operations [21–23]. 
 

 
METHODOLOGY 
 

In characterising the filament current at the 
electron source of an electron accelerator, a 
regression machine learning algorithm [24] is used to 
predict the current based on existing operational 
parameter data. The machine learning regression 
methods used are the decision tree and random forest 
regressor. The software used for analysis is Python 3 
(Jupyter Notebook). The research steps can be seen 
in Fig. 2. 

 
Fig 2. Characterisation of filament current using a machine learning regression algorithm. 

 
The first step is to collect electron accelerator 

operation data, including time data, high voltage 
source current, voltage at high voltage source, 
filament current, coulomb current, vacuum pressure, 
and electron beam current. The data is compiled in 
the form of a .csv file. This study uses the filament 
current as the output (target), while the other 
parameters are inputs. The next step is to plot the data 
in the form of a graph to determine the pattern of the 
data. Next, data cleaning and data normalisation are 
performed. Data cleaning uses the data.isnull() 
feature. Data cleaning is done to remove outliers and 
incomplete data. Data normalisation is performed on 
numeric features to ensure all variables are on the 
same scale so that the algorithm works optimally. 
The feature used for normalisation is MinMaxScaler. 

After the data preprocessing, the next step is 
identifying important features that correlate with 
filament current in electron beam accelerator 
operation data. The feature analysis used is a 
correlation matrix and feature importance. The 
correlation matrix feature shows the relationship 
between parameters in the dataset [25], while the 
importance feature shows how much influence each 
variable has on the prediction model [26]. 

The fourth step is to apply machine learning 
algorithms. The selected method is non-linear 
regression [27]. In this study, a decision tree 
regressor and a random forest regressor were chosen. 
Both methods can capture non-linear interactions, 
analyse interactions between features, and be robust 
if there are data variations [28]. The data is divided 
into training and test data with a ratio of 80:20, with 
a random seed of 42. The last step is evaluation by 
calculating Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and R2 score to measure the 
accuracy of the training results [29]. Then, the 
performance of training results for the decision tree 
and random forest regressor is compared. 

 
RESULT AND DISCUSSION 
 

The data taken consists of five main parameters 
in the operation of the electron accelerator. The main 
concern is the electron source filament current, as 
shown in Table 1. From the data, it can be seen that 
when the filament current increases, the electron 
beam current also increases. This is because the 
number of electrons produced and extracted increases 
along with the rise in filament current. With the 
increase in electrons, the vacuum level will decrease. 

Table 1. Example of electron beam accelerator parameter data display. 
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Time 

(minute) 
Highvoltage 

Current (mA) 
Beam 

Current (µA) 
Filament 

Current (A) 
Vacuum  

Pressure (mbar) 

0 0.5 0.04 0.54 0.0000086 

1 0.4 0.04 0.62 0.0000087 

2 0.4 0.05 1.14 0.0000087 

3 0.4 0.1 1.8 0.0000085 

4 0.4 0.13 2.53 0.0000085 

5 0.4 0.05 3.12 0.0000085 

6 0.4 0.13 3.71 0.0000085 

7 0.5 0.14 4.16 0.0000087 

8 0.4 0.57 5.14 0.0000087 

9 0.4 1.32 5.73 0.0000087 

10 0.4 3.86 6.53 0.0000087 

11 0.5 17.36 7.3 0.0000087 

12 0.5 36.54 7.79 0.0000087 

13 0.9 130.8 8.43 0.0000087 

14 1.51 313.65 8.98 0.000009 

15 2.2 516 9.42 0.0000093 

16 4 1043.3 10.04 0.0000095 

17 6.1 1694.4 10.48 0.00001 

18 9.7 2859.9 10.94 0.00001 

After obtaining the data, it is processed, and 
then the data will be plotted in the form of a graph to 
determine the pattern of the data. Fig. 3 shows the 
relationship between each pair of parameters as a 
scatter plot. This scatter plot explores the relationship 
between each variable in a dataset. Each small box 
represents the relationship between two different 
variables. There is a linear relationship between 
filament current and beam current, filament current 
and high voltage source current, and high voltage 
current and beam current. This means it has a positive 
correlation; one variable increases, and its pair of 
variables also tends to increase. The histogram on the 
main diagonal shows the distribution of each 
variable. 

After that, data preprocessing is carried out, 
namely, cleaning the data and normalising the data 
scale, relatively easy to analyse. The next step is 
identifying important features correlating with 
filament current in electron beam accelerator 
operation data. Feature analysis uses a correlation 

matrix and feature importance. The parameters in the 
electron beam accelerator include filament current, 
time, high voltage source current, beam current, and 
vacuum pressure. Fig. 4 shows the correlation 
between parameters, with filament current as the 
output (target) and other parameters as the input.  

The correlation matrix has a value range of -1 
to 1; if it is close to 1, the relationship between the 
two variables is very strong. From the heatmap 
visualisation, close to 1 means it is positively 
correlated, and the two variables move in the same 
direction. If it is close to 0, then the variables have no 
linear relationship. All parameters are related to time 
and, on average, positively correlated. Then, the 
highest correlation relationship with filament current 
is high voltage current, and the beam current is 0.68. 
This shows a close relationship between filament 
current, high voltage source, and beam current. The 
other variable, vacuum pressure, is 0.53, which is 
also quite influential on filament current. 
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Fig 3. Pairplot of the relationship pattern between parameters. 
 
 

 
 

Fig 4. Heatmap correlation matrix. 
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Fig 5. Feature importance with random forest. 

 
Feature importance is instrumental in machine 

learning because it can help us understand which 
features contribute the most to the prediction results 
[30]. From Fig. 5, it can be seen that the highest 
values are beam current and time, which affect the 
prediction of filament current. High voltage and 
vacuum pressure also have an effect, but are not 
significant. The character of the electron beam 
accelerator operation data is polynomial, so that a 
non-linear regression analysis can be performed.  

In machine learning regression for non-linear 
data, several methods are used in this study, namely 

the decision tree regressor and random forest 
regressor [31]. The data is divided into training and 
test data with a ratio of 80:20. Training is done for 
each method with random seeds totalling 42. A 
decision tree regressor is a type of machine learning 
that can be used for regression. Unlike the 
classification decision tree that predicts discrete 
labels, the regressor decision tree is used to predict 
continuous values. This model divides some data into 
parts based on feature values to minimise the error in 
predicting the target value [31]. The plot of the 
decision tree process can be seen in Fig. 6. 

 

 
Fig 6. Decision tree regression plot. 

 
Random forest regressor is a decision tree-

based ensemble method for continuous output 
prediction. In random forest, multiple decision trees 
are randomly constructed, and the final result is the 

average prediction of all trees, which helps reduce 
overfitting and improve model accuracy [32,33]. The 
plot of the random forest process can be seen in Fig. 
7. 
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Fig 7. Random Forest regression plot. 

 
Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and R2 score are calculated to measure 
the accuracy of the training results. MAE is used to 
average the absolute difference between the value 
predicted by the model and the actual value. It 
measures how far the average prediction of the model 
is from the actual value. MSE is the average of the 
squares of the difference between the predicted and 

actual values. It gives more weight to more 
significant errors because the errors are squared. R² 
is a measure of the proportion of variance in the 
dependent variable that the independent variables in 
the model can explain. R² values range between 0 and 
1, where 1 indicates that the model explains all the 
variation in the data, and 0 indicates that the model 
explains no variation. 

 

 
Fig 8. Training evaluation results with decision tree and random forest. 

 
The training results in Fig. 8 obtained for the 

decision tree regressor model obtained an MAE of 
0.531, an MSE of 0.316, and an R2 of 0.961, while 
the random forest regressor obtained an MAE of 
0.379, an MSE of 0.280, and an R2 of 0.965. Both 
show good performance, as indicated by R2 values 
close to 1, but the random forest is slightly superior. 
The MAE and MSE are lower than the decision tree 

based on the overall results. Random forest produces 
more accurate predictions and fewer errors than 
decision trees. Random forest is better because it is 
an ensemble learning method that combines many 
decision trees. The randomisation technique in 
feature selection and data samples in random forest 
can also reduce model variance and improve 
generalisation [34]. 
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CONCLUSION 

Based on the characterisation of filament 
current using machine learning regression, it can be 
seen that filament current is very crucial in 
determining the electron beam current. When the 
filament current is increased, the electron beam 
current increases. This is because the number of 
electrons produced and extracted increases along 
with the rise in filament current. The machine 
learning method obtains accurate results with the 
decision tree regressor and random forest regressor 
methods. The training results for the decision tree 
regressor model obtained an MAE of 0.531, an MSE 
of 0.316, and an R2 of 0.961, while the random forest 
regressor obtained an MAE of 0.379, an MSE of 
0.280, and an R2 of 0.965. Random forest is better 
because this method is an ensemble learning method 
that combines many decision trees. Randomisation 
techniques in feature selection and data samples in 
random forests can also reduce model variance and 
improve generalisation. 
 
ACKNOWLEDGEMENT 

The authors would like to thank the Directorate of 
Talent Management of the National Research and 
Innovation Agency, the Research Centre for 
Accelerator Technology, and Universitas Gadjah 
Mada for the facility support for this research. 
 
AUTHOR CONTRIBUTION 

I.D. Rachmawati served as the main contributor in 
this study. She was responsible for data acquisition 
from the electron beam accelerator, training of 
machine learning models, data analysis for filament 
current characterisation, and the primary drafting of 
the manuscript. N. Effendy and Taufik contributed to 
the conceptual framework of the research, evaluation 
of the implemented models, and provided critical 
review and revision of the manuscript. 
Saefurrochman assisted in data collection and 
contributed to the writing and editing of the paper.  
 
 
REFERENCES 

[1] S. Sabharwal, Electron Beam Irradiation 
Applications, in: PAC2013, Pasadena, CA 
USA, 2013: pp. 745–748. 

[2] B. Bogdanovitch, V. Senioukov, A. Koroliov, 
K. Simonov, Application of low energy 
electron beams for technology and medicine, 
in: Proceedings of the 1999 Particle 
Accelerator Conference (Cat. No.99CH36366), 
1999: pp. 2570–2572. 
https://doi.org/10.1109/PAC.1999.792779. 

[3] Y. Ueki, M. Oshida, H. Sando, N. Seko, Bleed-
out suppression of silicone rubber by electron 
beam crosslinking, Radiation Physics and 
Chemistry 193 (2022) 110002. 
https://doi.org/10.1016/j.radphyschem.2022.11
0002. 

[4] T. Czvikovszky, Application of low-energy 
electron-beam curing in plastics processing and 
coating technologies, Radiation Physics and 
Chemistry (1977) 26 (1985) 547–553. 
https://doi.org/10.1016/0146-5724(85)90207-
9. 

[5] G. Gotzmann, J. Portillo, S. Wronski, Y. Kohl, 
E. Gorjup, H. Schuck, F.H. Rögner, M. Müller, 
I.F. Chaberny, J. Schönfelder, C. Wetzel, Low-
energy electron-beam treatment as alternative 
for on-site sterilization of highly functionalized 
medical products – A feasibility study, 
Radiation Physics and Chemistry 150 (2018) 
9–19. 
https://doi.org/10.1016/j.radphyschem.2018.04
.008. 

[6] S.D. Pillai, E.T. Pillai, Agriculture: Electron 
Beam Irradiation Technology Applications in 
the Food Industry, in: E. Greenspan (Ed.), 
Encyclopedia of Nuclear Energy, Elsevier, 
Oxford, 2021: pp. 313–329. 
https://doi.org/10.1016/B978-0-12-819725-
7.00141-0. 

[7] M. Yadav, M. Oruganti, S. Zhang, B. Naranjo, 
G. Andonian, Y. Zhuang, Ö. Apsimon, C.P. 
Welsch, J.B. Rosenzweig, Machine learning-
based analysis of experimental electron beams 
and gamma energy distributions, (2023). 
https://doi.org/10.48550/arXiv.2209.12119. 

[8] I.D. Rachmawati, N. Effendy, T. Taufik, 
Machine learning application for particle 
accelerator optimization-a review, IAES 
International Journal of Artificial Intelligence 
(IJ-AI) 14 (2025) 3014–3021. 
https://doi.org/10.11591/ijai.v14.i4.pp3014-
3021. 

[9] I.D. Rachmawati, N. Effendy, Taufik, 
Nurhuda, Parwanto, H. Suryanto, Prediction of 
Cyclotron Ion Source Output using Deep 
Neural Networks, in: 2025 International 
Conference on Computer Sciences, 
Engineering, and Technology Innovation 
(ICoCSETI), 2025: pp. 346–350. 
https://doi.org/10.1109/ICoCSETI63724.2025.
11019335. 

[10] G. ul Islam, A. Rehman, M. Iqbal, Z. Zhou, 
Simulation and test of a thermioic hairpin 
source DC electron beam gun, Optik 127 
(2016) 1905–1908. 
https://doi.org/10.1016/j.ijleo.2015.11.132. 



Atom Indonesia 

 

[11] B. Whelan, D. Constantin, R. Fahrig, P. Keall, 
L. Holloway, B. Oborn, EP-1929: 
Characterisation of a gridded electron gun in 
magnetic fields: implications for MRI-Linac 
therapy, Radiotherapy and Oncology 119 
(2016) S915. https://doi.org/10.1016/S0167-
8140(16)33180-2. 

[12] Y. Feng, W. Li, Y. Chen, X. Kang, J. Li, K. 
Tang, Z. Zhao, X. Liu, K. Zhou, Y. You, M. Li, 
P. Li, Z. Xu, T. Zhao, R. Mao, Design and 
performance of a low-emittance electron gun 
for electron beam probe, Nuclear Instruments 
and Methods in Physics Research Section A: 
Accelerators, Spectrometers, Detectors and 
Associated Equipment 1066 (2024) 169604. 
https://doi.org/10.1016/j.nima.2024.169604. 

[13] R.M. Tromp, J.B. Hannon, M.L. Dyck, Gun 
energy filter for a low energy electron 
microscope, Ultramicroscopy 253 (2023) 
113798. 
https://doi.org/10.1016/j.ultramic.2023.113798
. 

[14] W. Ting, W. Yifan, G. Chong, J. Siyuan, 
Feasibility study on feeding wire electron beam 
brazing of pure titanium using an electron gun 
for space welding, Vacuum 180 (2020) 109575. 
https://doi.org/10.1016/j.vacuum.2020.109575
. 

[15] J. Zhang, J. Xu, D. Ji, H. Xu, M. Sun, L. Wu, 
X. Li, Q. Wang, X. Zhang, Development of an 
electron gun based on CNT-cathode for 
traveling wave tube application, Vacuum 186 
(2021) 110029. 
https://doi.org/10.1016/j.vacuum.2020.110029
. 

[16] Darsono, Taufik, Suprapto, Saefurrochman, E. 
Nuraini, Sutadi, Construction and 
Characterization of the Diode and Triode 
Electron Sources for EBM 300 keV/20 mA, 
IJTech - International Journal of Technology 
15 (2024) 154–165. 

[17] A.I.M. Alabdullah, Simulation study for the 
characterization of anode shape effect on the 
electron beam emittance of thermionic electron 
gun, Optik 268 (2022) 169761. 
https://doi.org/10.1016/j.ijleo.2022.169761. 

[18] Yu.S. Pavlov, V.V. Petrenko, P.A. Alekseev, 
P.A. Bystrov, O.V. Souvorova, Trends and 
opportunities for the development of electron-
beam energy-intensive technologies, Radiation 
Physics and Chemistry 198 (2022) 110199. 
https://doi.org/10.1016/j.radphyschem.2022.11
0199. 

[19] Muhtadan, Taxwim, R.A. Muhammad, T.K. 
Hariadi, O.A.A. Alzebar, K.T. Putra, 
Development of Electron Source Filament 
Current Data Acquisition System on EBM 

Arjuna 1.0, in: 2022 2nd International 
Conference on Electronic and Electrical 
Engineering and Intelligent System (ICE3IS), 
2022: pp. 208–212. 
https://doi.org/10.1109/ICE3IS56585.2022.10
010157. 

[20] Y.A. Yucesan, W. Blokland, P. Ramuhalli, A. 
Zhukov, C. Peters, D. Brown, C. Long, A 
machine learning approach for particle 
accelerator errant beam prediction using spatial 
phase deviation, Nuclear Instruments and 
Methods in Physics Research Section A: 
Accelerators, Spectrometers, Detectors and 
Associated Equipment 1063 (2024) 169232. 
https://doi.org/10.1016/j.nima.2024.169232. 

[21] N. Effendy, K. Shinoda, S. Furui, S. Jitapunkul, 
Automatic recognition of Indonesian 
declarative questions and statements using 
polynomial coefficients of the pitch contours, 
Acoustical Science and Technology 30 (2009) 
249–256. https://doi.org/10.1250/ast.30.249. 

[22] N. Effendy, M.Z.A. Fadhilah, D.W. Kraton, 
H.A. Abrar, The prediction of thermal 
sensation in building using support vector 
machine and extreme gradient boosting, IAES 
International Journal of Artificial Intelligence 
(IJ-AI) 13 (2024) 2963–2970. 
https://doi.org/10.11591/ijai.v13.i3.pp2963-
2970. 

[23] R.M. Zein, N. Effendy, E. Basuki, N. Nopriadi, 
A design of a brain tumor classifier of magnetic 
resonance imaging images using ResNet101V2 
with hyperparameter tuning, IAES 
International Journal of Artificial Intelligence 
(IJ-AI) 13 (2024) 3141–3146. 
https://doi.org/10.11591/ijai.v13.i3.pp3141-
3146. 

[24] D. Maulud, A. Abdulazeez, A Review on 
Linear Regression Comprehensive in Machine 
Learning, Journal of Applied Science and 
Technology Trends 1 (2020) 140–147. 
https://doi.org/10.38094/jastt1457. 

[25] J. Graffelman, J. de Leeuw, Improved 
Approximation and Visualization of the 
Correlation Matrix, The American Statistician 
77 (2023) 432–442. 
https://doi.org/10.1080/00031305.2023.21869
52. 

[26] F.K. Ewald, L. Bothmann, M.N. Wright, B. 
Bischl, G. Casalicchio, G. König, A Guide to 
Feature Importance Methods for Scientific 
Inference, (2024). 
https://doi.org/10.48550/arXiv.2404.12862. 

[27] O.A. Montesinos López, A. Montesinos López, 
J. Crossa, Functional Regression, in: O.A. 
Montesinos López, A. Montesinos López, J. 
Crossa (Eds.), Multivariate Statistical Machine 



Atom Indonesia 

 

 

Learning Methods for Genomic Prediction, 
Springer International Publishing, Cham, 2022: 
pp. 579–631. https://doi.org/10.1007/978-3-
030-89010-0_14. 

[28] O.A. Montesinos López, A. Montesinos López, 
J. Crossa, Random Forest for Genomic 
Prediction, in: O.A. Montesinos López, A. 
Montesinos López, J. Crossa (Eds.), 
Multivariate Statistical Machine Learning 
Methods for Genomic Prediction, Springer 
International Publishing, Cham, 2022: pp. 633–
681. https://doi.org/10.1007/978-3-030-89010-
0_15. 

[29] E. Wu, Y. Lin, W. Wang, Q. Zhang, X. Li, T. 
Ding, X. Wang, X. He, Research on particle 
accelerator control network deformation 
prediction algorithm with machine learning, 
Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, 
Spectrometers, Detectors and Associated 
Equipment 1065 (2024) 169533. 
https://doi.org/10.1016/j.nima.2024.169533. 

[30] P. Baraldi, A. Castellano, A. Shokry, U. 
Gentile, L. Serio, E. Zio, A Feature Selection-
based Approach for the Identification of 
Critical Components in Complex Technical 
Infrastructures: Application to the CERN Large 
Hadron Collider, Reliability Engineering and 

System Safety 201 (2020). 
https://doi.org/10.1016/j.ress.2020.106974. 

[31] C. Zhang, C. Hu, S. Xie, S. Cao, Research on 
the application of Decision Tree and Random 
Forest Algorithm in the main transformer fault 
evaluation, J. Phys.: Conf. Ser. 1732 (2021) 
012086. https://doi.org/10.1088/1742-
6596/1732/1/012086. 

[32] S. Prihanto, N. Effendy, N. Nopriadi, Hand 
gesture-based automatic door security system 
using squeeze and excitation residual networks, 
IAES International Journal of Artificial 
Intelligence (IJ-AI) 13 (2024) 1619–1624. 
https://doi.org/10.11591/ijai.v13.i2.pp1619-
1624. 

[33] V.A. Yulianto, N. Effendy, A. Arif, Finger vein 
identification system using capsule networks 
with hyperparameter tuning, IAES 
International Journal of Artificial Intelligence 
(IJ-AI) 12 (2023) 1636–1643. 
https://doi.org/10.11591/ijai.v12.i4.pp1636-
1643. 

[34] S. Zhao, S. Chen, H. Yang, F. Wang, Z. Wei, 
RF-RISA: A novel flexible random forest 
accelerator based on FPGA, Journal of Parallel 
and Distributed Computing 157 (2021) 220–
232. 
https://doi.org/10.1016/j.jpdc.2021.07.001. 

 


